Existence for Non Nearest Neighbor Random Walk in Random Environment Robust stochastic stabilization for uncertain stochastic system with time delay 随机环境中非紧邻随机游动的存在性不确定时滞随机系统的鲁棒随机镇定
Information fusion filtering for discrete dynamic stochastic system 离散动态随机系统的信息融合滤波方法
The multi-class, multi-criteria stochastic system optimum and optimal toll problem 多用户多准则随机系统最优与最优收费
Optimum Operation and Optimum Analysis to Permit Coding Function of a Kind of Signal Transitive Stochastic System 一类信号传递随机系统下可容许编码函数的最佳运算与优化分析
Groundwater system is an intricate and stochastic system. 地下水系统是一个复杂的随机系统。
The concepts of viability and invariance about complex stochastic system are introduced, theorems of viability and invariance are proposed and proved to characterize rational decision. 为了刻画复杂随机系统的理性决策,提出了复杂随机系统的生存性及不变性的概念,给出并证明了复杂随机系统的生存性定理及不变性定理。
The control of a stochastic system with unknown parameter was considered. 考虑具有未知参数的随机系统的最优控制问题。
A simplified on-line multivariable stochastic system state model parameters estimation algorithm is developed. 本文提出了一种简化的多变量随机系统状态模型参数在线辨识方法。
Finite time stabilization for output probability density function of stochastic system 随机系统输出概率密度函数的有限时间镇定
Model Design of Dynamic Bayesian Network Structure Learning in Stationary Stochastic System 平稳动态系统DBN结构学习模型设计
Time dependence of entropy flux and entropy production for a stochastic system with double singularities driven by non-Gaussian noise 非高斯噪声驱动的双奇异随机系统的熵流与熵产生
The filtering methods based on information fusion estimation in linear or nonlinear systems was presented for the filtering problem in discrete dynamic stochastic system. 针对离散随机动态系统的滤波问题,提出了基于信息融合估计的线性和非线性滤波方法。
A FitzHugh Nagumo ( FHN) neural model, which is double singular stochastic system, is studied. 研究了一个具有双奇异随机性的FitzHugh-Nagumo(FHN)神经模型。
The optimal control problem of a nonlinear stochastic system with values in Hilbert space is studied. 研究Hilbert空间中一类随机系统的最优控制问题。
Optimization Design for Stochastic System by Simulation Method 用仿真方法对随机系统优化设计
This paper provides a theoretical and applied review for variance reduction techniques used in stochastic system simulation. 本文对随机系统仿真中的主要方差衰减技术作一个综合评述。
A New Differential State Estimator and Controller for Nonlinear Stochastic System 一类新型非线性随机系统微分状态估计器和控制器
A two-input two-output Stochastic system was successfully simulated on digital computer. 在数字计算机上对一个2输入&2输出随机系统成功地进行了模拟。
Power system load forecasting using stochastic system state model identification technique is proposed. 本文将随机系统状态模型辨识技术用于电力系统负荷预报。
Based on these results, adaptive pole placement algorithm for multivariable stochastic system is brought forward. 在此基础上,本文撇开了系统的能控性,针对多变量随机系统提出了无需能控性的自适应极点配置算法。
This paper is concerned with the convergence of an identification algorithm for the single-input single-output linear discrete stochastic system. 本文主要是研究关于单输入单输出线性离散系统参数辨识算法的收敛性问题。
A simulation optimization package based on genetic algorithms is designed to solve the optimization problem of the stochastic system. 为了解决随机性系统的仿真优化问题,基于遗传算法设计了一个仿真优化包。
Finally, a synthesis method for recursive parameter estimation of a stochastic system is also discussed. 最后讨论了随机系统参数递推估算的综合方法。
Forecasting research workers show solicitude for the research of forecasting method and forecasted reliability in the stochastic system. 对于新型的复杂随机系统的预测方法的研究及随机系统预测的可靠性研究是预测工作者非常关注的。
Kalman filter used in linear discrete stochastic system has good convergence and the ability to remove high frequency noises. 卡尔曼滤波用于线性离散随机系统具有非常好的收敛性和滤除高频噪声的能力。
In the third, exponential stability in mean square of the uncertain distributed delay stochastic system is considered. 第三,研究了具分布型时滞随机系统的均方指数稳定性,目前这一领域的研究,结论很少见,本学位论文利用It?
R A stochastic system driven by two dichotomous noises is studied. 研究了由两个双态噪声驱动的随机系统。
Application of linear stochastic system theory in load modelling 线性随机系统理论在负荷模型研究中的应用
Then, based on the theories of the stochastic system and the fuzzy system, a new delay-dependent method of fault-tolerant controller design is proposed. 然后,基于模糊系统理论和随机理论,提出一种新的依赖时延的容错控制器设计方法。
It has broken down the impassable barrier between the deterministic system and the stochastic system. 它打破了确定性与随机性之间不可逾越的界限。